
A CPS-based IR for the LLVM Backend

Johann Rudloff

Idris Developer Meeting, May 2022

May 20, 2022



CPS – Continuation Passing Style

I Every call is a tail-call

I Every function ends with a tail-call

I All function arguments are “atomic” (variable, constant)

I Functions never return (no call stack required!)

I Control flow is made explicit



Benefits of CPS

I No call stack → trivial scan for GC roots
I Full program state (current continuation + arguments) can be

easily captured/suspended at any moment
I Perfect foundation to implement lightweight threads

I Can (almost) directly be mapped to machine code

I Often cited: Easier optimisations?

I (Is this a valid reason?) Almost everyone else (in the
functional space) does it: SML, several Schemes, GHC (kind
of)



Transformation to CPS

I Things that would happen after a return, get wrapped in a
“continuation” and passed as argument

I All functions are transformed to take a continuation as their
first argument
I This creates lots of closures, performance impact to be

measured

I Instead of returning, invoke that continuation

I For LLVM, a “Lambda Lifting”-like step is required afterwards

I This can be described as “wrapping the program structure
inside-out”

I In summary: Total brainfuck



Transformation to CPS - Implementation
NamedCExp -> Core CPSExpr

I Implemented in a backend-agnostic way

I Potentially beneficial for other backends, esp. JavaScript



Memory Allocation - The Easy Part

I Functions contain no loops

I Max required memory can be statically inferred for all1

functions
I Heap check at function entry, if space is not enough, jump to

GC
I GC is invoked with current function and all its arguments
I Since functions never return, there is no (call-)stack to be

scanned for GC roots
I GC then “restarts” the function

I When enough heap available: simple “bump allocation”

1with exceptions, see next slide



Memory Allocation - The Challenging Part

I Non-trivial programs contain allocations of statically unknown
size
I String primitives: Str{Append,Cons,Reverse,Substr,Tail}
I (Big) Integer arithmetic
I Buffer, IOArray

I Current solution: wrap operators which require dynamic
allocations in a primitive function, perform hand-crafted heap
check on entry



Current Roadmap for the CPS-based LLVM Backend

I re-implement code-generation for new IR (∼ 80% done)

I adjust compiler primitives and “builtins” for new allocation
mechanism (∼ 90% done)

I hook up the GC (prepared with stubs)
I should be straight-forward but surprises may lurk here

I current progress: 1 5 12 20 out of 22 tests passing2

I the big milestone: self-hosting

I figure out “how to FFI”

2custom selection from Idris2 codebase + own backend-tests



Source Code

I “rapid” an Idris2 LLVM Backend - “cps” branch (active)
https://git.sr.ht/˜cypheon/rapid/tree/cps

I Idris2 CPS Transform with a dummy JS backend (bit dated)
https://git.sr.ht/˜cypheon/idris2-cps

https://git.sr.ht/~cypheon/rapid/tree/cps
https://git.sr.ht/~cypheon/rapid/tree/cps
https://git.sr.ht/~cypheon/idris2-cps
https://git.sr.ht/~cypheon/idris2-cps


References

I Code & Co.: Compiling With CPS
https://jozefg.bitbucket.io/posts/2015-04-30-cps.html

I Jared Tobin: Transforming to CPS
https://jtobin.io/transforming-to-cps

I Matt Might: How to compile with continuations
https://matt.might.net/articles/cps-conversion/

I Appel, A. W., and Jim, T. 1989. ”Continuation-passing,
closure-passing style,” in Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages - POPL ’89, Austin, Texas, United States: ACM
Press, pp. 293–302.
https://dl.acm.org/doi/abs/10.1145/75277.75303

I Appel, A. W. 1992. Compiling with continuations; Cambridge
University Press.

https://jozefg.bitbucket.io/posts/2015-04-30-cps.html
https://jozefg.bitbucket.io/posts/2015-04-30-cps.html
https://jtobin.io/transforming-to-cps
https://jtobin.io/transforming-to-cps
https://matt.might.net/articles/cps-conversion/
https://matt.might.net/articles/cps-conversion/
https://dl.acm.org/doi/abs/10.1145/75277.75303

	Continuation Passing Style

